نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

چکیده:

سازگاری ها در عضلات اسکلتی انسان در پاسخ به تمرین ورزشی، تا حد زیادی بر اثر نوع، حجم، شدت و تواتر (فرکانس) محرک های تمرینی مشخص می شود. با وجود این، شواهد زیادی نشان می دهند دسترسی به درشت مغذی ­های درون زاد و برون زاد می تواند پاسخ های درون سلولی چند گانه ای را به فعالیت ورزشی استقامتی و مقاومتی _ هر دو_ جرح و تعدیل کند. در کوتاه مدت (حاد)، دستکاری میزان دسترسی به سوبسترا (با تغییر دادن رژیم غذایی و یا زمان بندی وعده­های غذایی) غلظت سوبستراها و هورمون های موجود در خون که جرح و تعدیل چند مسیر پیام رسانی وابسته به گیرنده را بر عهده دارند به سرعت تغییر می دهد. رهایش سایتوکاین ­ها و عوامل رشدی ناشی از عضلات اسکلتی در حال انقباض نیز، گیرنده های سطح سلول را تحریک می کند و بنابراین  آبشارهای پیام رسانی درون سلولی زیادی فعال می شوند. این عوامل موضعی و سیستمیک، باعث اختلالات بارزی در نیمرخ ذخایر عضلات اسکلتی (و سایر بافت های حساس به انسولین) می شوند که به نوبه خود، آثار بارزی را بر متابولیسم استراحتی مواد سوختی و الگوهای استفاده از مواد سوختی هنگام فعالیت ورزشی می گذارند. با تکرار فعالیت ورزشی در هفته­ها یا ماه­ها، این تعاملات مواد مغذی_ فعالیت ورزشی، پتانسیل تغییر دادن بسیاری از فرایند های سازشی موجود در عضلات اسکلتی را دارند که در نهایت، به تفاوت های فنوتیپی ویژه (خاص) منجر می شود که بین افراد دیده می شود. یکی از راهبرد هایی که سازگاری ناشی از تمرین استقامتی را افزایش می دهد؛ آغاز فعالیت ورزشی در حالتی است که غلظت گلیکوژن عضلانی پایین ( تمرین کم) باشد. پاسخ تمرینی بزرگتر در اثر این دسترسی پایین به کربوهیدرات درون زاد، احتمالاً با افزایش فعالسازی کینازهای اصلی پیام رسان سلولی (نظیر AMPK, P38 MAPK)، عوامل رونویسی (نظیر P53, PPARɤ) و همکاران فعالسازی رونویسی[کو اکتیویتور] (PGC-1a) تنظیم می شود؛ بطوریکه تنظیم افزایشی هماهنگ شده در ژنوم میتوکندریایی و هسته ای _ هر دو_ رخ می دهد. این مطالعه مروری دیدگاهی هم عصر با درک ما از وقایع سلولی و مولکولی _عضلات اسکلتی در پاسخ به فعالیت ورزشی پس از تغییر دسترسی آن به مواد مغذی را ارائه می کند و در مورد چگونگی تعامل محیط هورمونی با تحریکات انقباضی به منظور جرح و تعدیل برخی از پاسخ های کوتاه مدت (حاد) به فعالیت ورزشی و در نتیجه بطور بالقوه افزایش دادن یا مهار کردن سازگاری های تمرینی بعدی بحث می کند.

بیشتر بخوانید

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

مقدمه

یکی از سیستم های متابولیکی که بدون نیاز به اکسیژن (بی هوازی) ATP را در سلول ها بازتولید می کند، واکنش آدنیلات کیناز است که واکنش میوکیناز نیز نامیده می شود. در این واکنش ۲ مولکول ADP به یکدیگر می پیوندند و ATP و آدنوزین مونوفسفات (AMP) را تولید می کنند. در واقع هنگام فعالیت ورزشی شدید؛ سرعت هیدرولیز ATP زیاد است. اگرچه عضله به شکل موثری ATP را توسط مسیرهای فسفاژن، گلیکولیز و فسفوریلاسیون اکسایشی بازسازی می کند اما باز هم ADP به عنوان یک فراورده دفسفوریلاسیون ATP افزایش می یابد. با توجه به اینکه ADP باعث کاهش شارژ انرژی سلول می شود باید سازوکاری وجود داشته باشد تا آن را حذف کند. این سازوکار توسط واکنش آدنیلات کیناز میسر می شود.  این واکنش با کنار هم قرار دادن دو مول ADP باعث تشکیل یک مول ATP و یک مول AMP می شود. هر چند این واکنش به تولید ATP نیز منجر می شود اما مقدار ATP تولیدی در مقایسه با دیگر منابع بازسازی ATP هنگام فعالیت ورزشی بسیار کم است. اما در هر صورت این واکنش می تواند فواید بالقوه ای در عملکرد عضلانی داشته باشد که در ادامه به آن پرداخته ایم. AMP تولیدی از واکنش میوکیناز می تواند به آدنورین تجزیه شود که در این صورت میل به خروج از سلول عضلانی پیدا می کند. راه دوم این است که AMP طی واکنشی برگشت­ ناپذیر، توسط آنزیم AMP دِ آمیناز، به IMP (اینوزین مونو فسفات) تبدیل شده که در این حین، NH3 از آن جدا می شود؛ سپس طی دو واکنش دیگر، باز پس دهی آمین یا رآمیناسیون انجام گرفته و مجددأ AMP تشکیل می شود. اگر AMP راه دوم را طی کند، مسیر تبدیل AMP به IMP و تشکیل دوباره AMP، چرخه ی پورین- نوکلئوتید نامیده می شود. چرخه نوکلئوتید پورین در هنگام فعالیت ورزشی شدید، روزه داری یا گرسنگی، هنگامی که مخازن ATP کاهش یافته است، رخ می دهد.

بیشتر بخوانید

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

مقدمه

فسفوریلاسیون اکسایشی فرآیندی است که در آن الکترون های پرانرژی NADH/FADH از طریق کمپلکس های مختلف واقع در غشای داخلی میتوکندری منتقل می شوند و در نهایت به اکسیژن مولکولی می رسند. این انتقال الکترون منجر به پمپاژ پروتون ها به فضای بین غشایی میتوکندری می شود و یک گرادیان الکتروشیمیایی ایجاد می کند که برای سنتز ATP استفاده می شود. بنابراین میتوکندری ها جایگاه اصلی مسیر تولید انرژی هوازی یا فسفوریلاسیون اکسایشی هستند. در اکثر انواع سلول، فسفوریلاسیون اکسایشی مکانیسم اولیه برای تولید ATP است، به جز در سلول های خاصی مانند گلبول های قرمز. گلبول های قرمز خون فاقد میتوکندری هستند و به همین علت نمی توانند از مسیر فسفوریلاسیون اکسایشی ATP را تولید کنند.

بیشتر بخوانید

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

آشنایی با مفهوم سیستم های انرژی (پیوستار انرژی)

پیوستار انرژی، انواع سیستم های انرژی مورد استفاده در فعالیت های بدنی مختلف را توصیف می کند.برای مثال، در ورزش‌های گروهی مانند فوتبال یا بسکتبال، وهله هایی از فعالیت‌های انفجاری و وهله هایی از فعالیت های با شدت کمتر وجود دارد، بنابراین نسبت سیستم هوازی و بی‌هوازی متفاوت است. در واقع مفهوهم پیوستار انرژی به این می پردازد که چگونه با تغییر شدت و مدت فعالیت ورزشی سهم سیستم های انرژی در تامین ATP مورد نیاز برای انقباض عضلانی تغییر می کند.در واقعیت، سیستم های انرژی هرگز به صورت مجزا کار نمی کنند و همه در زمان های مختلف با درصدهای متفاوتی کار می کنند. برای مثال هنگام دویدن ملایم، بدن همچنان از نسبت بسیار کمی از سیستم ATP-PC (فسفاژن) استفاده می کند و هنگام دویدن سرعت، بیشتر از سیستم فسفاژن استفاده می شود، البته در مقادیر بسیار کم از سیستم هوازی نیز استفاده می شود. همانطور که گفته شد درصد استفاده از هر یک از سیستم های انرژی به طور مداوم در حال تغییر خواهد بود، به ویژه در ورزش های نوع بازی که شدت و مدت تمرین انجام شده به طور مداوم در حال تغییر است.به طور کلی سیستم های انرژی به دو بخش بی هوازی و هوازی تقسیم می شوند. مسیرهای بی هوازی خود به دو بخش بی هوازی بی لاکتیک (سیستم فسفاژن) و بی هوازی با لاکتیک (گلیکولیز بی هوازی) تقسیم می شود. بر همین اساس معمولاً  سیستم های انرژی در سه نوع زیر طبقه بندی می شوند:

  1. سیستم فسفاژن
  2.  سیستم گلیکولیز بی هوازی
  3. فسفوریلاسیون اکسایشی (هوازی)

بیشتر بخوانید

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

گلیکولیز بی هوازی

گلیکولیز یا مسیر امبدن – میرهوف (Embden–Meyerhof–Parnas) مجموعه‌ای از واکنش‌های درون سلولی است که توسط آن یک قند شش کربنه (معمولاً گلوکز-۶-فسفات) به ترکیبات کربن‌دار کوچک‌تری (دو مولکول سه کربنه پیروات) شکسته می‌شود و بخشی از انرژی آزاد قند را تولید می کند. در فعالیت های ورزشی که با حداکثر تلاش بین ۳۰ ثانیه تا ۳ دقیقه به طول می انجامند سیستم گلیکولیز بی هوازی بیشترین نقش را در تامین انرژی مورد نیاز ورزشکار دارد. مانند دو ۴۰۰ و ۸۰۰ متر سرعت.

گلیکولیز یک واژه مرکب یونانی است که از دو بخش glykys به معنای شیرین و lysis به معنای شکستن (گلیکولیز: شکستن قند یا همان قندکافت) تشکیل شده است. نام امبدن –میرهوف از نام دو زیست‌شیمی‌دان آلمانی کاشف آن، یعنی گوستاو گورگ امبدن و اتو فریتز میرهوف گرفته شده‌است. در این واکنش‌ها گلوکز ابتدا در گروه هیدروکسیل کربن شماره شش، فسفردار شده و گلوکز ۶-فسفات تشکیل می شود. آنزیم کلیدی که این واکنش را کاتالیز می کند هگزو کیناز نام دارد. گلوکز ۶ فسفات در مرحله بعدی به فروکتوز ۶-فسفات تبدیل می‌گردد. سپس این ترکیب در کربن شماره یک نیز فسفرگیری کرده و فروکتوز ۶،۱- بیس‌فسفات را تولید می‌کند. در هر دو واکنش فسفرگیری، ATP دهنده گروه فسفاتی است. بنابراین اگر مبدا گلیکولیز از گلوکز باشد، برای اینکه فرایند گلوکولیز پیش برودنیازمند مصرف ۲ مول ATP یا انرژی است. با این حال سلول های عضلانی می توانند از قند ذخیره خود یعنی گلیکوژن نیز استفاده کنند. در هنگام فعالیت های ورزشی شدید، تارهای عضلانی گلیکوژن را به واحد های گلوکز ۱ فسفات تجزیه می کنند و سپس گلوکز ۱ فسفات به فروکتور ۶ فسفات تبدیل می شود. این فرایند گلیکوژنولیز نام دارد. ارزش آن این است که در گلیکوژنولیز برای تشکیل فروکتوز ۶ فسفات نیازی به مصرف ATP نیست. بنابراین اگر مبدا گلیکولیز بی هوازی از گلیکوژن باشد  یک ATP کمتر هزینه می شود. آنزیمی که گلیکوژن را به گلوکز ۱ فسفات تبدیل می کند، گلیکوژن فسفوریلاز نام دارد.

بیشتر بخوانید

تغذیه قبل از تمرین باید چگونه باشد؟

نویسندگان: علیرضا نیک نلم (دکتری فیزیولوژی ورزشی) و فرزانه صفرپور (کارشناس ارشد فیزیولوژی ورزشی)

گوینده: فرزانه صفرپور

فایل صوتی

مقدمه

تغذیه قبل از تمرین یکی از موضوعات جالب توجه برای همه ورزشکاران تفریحی و حرفه ای است. نکته مهم این است که قطعاً تغذیه هر ورزشکار متناسب با رشته ورزشی متفاوت است و هر ورزشکار تغذیه ورزشی منحصر به فردی دارد. با این حال، یک سری اصول اساسی وجود داره که رعایت آن ها می تواند کمک کننده باشد.

آیا مصرف وعده غذایی قبل از تمرین ضروری است؟

برخی از مطالعات نشان داده اند که انجام فعالیت ورزشی در شرایط گرسنگی یا ناشتایی می تواند به افزایش چربی سوزی و کاهش وزن منجر شود. با این حال، بسیاری از کارشناسان نسبت به گرسنگی قبل از فعالیت ورزشی هشدار می دهند. استدلالی که کارشناسان ارائه می کنند این است که فعالیت ورزشی در شرایط گرسنگی ممکن است چربی سوزی رو تا حدی تسهیل کند، اما چون انرژی مورد نیاز برای فعالیت ورزشی تامین نشده است، کیفیت تمرین کاهش می یابد. همچنین ممکن است خطر آسیب های عضلانی اسکلتی به دلیل خستگی ناشی از فعالیت ورزشی افزایش پیدا کند. بنابراین، سوخت رسانی کافی قبل از فعالیت ورزشی برای عملکرد ورزشی مناسب و حفظ کیفیت اجرا ضروری است. پیشنهاد ما این است که قبل از تمرین وعده یا وعده های غذایی مصرف شوند تا انرژی و سوخت کافی برای یک تمرین با کیفیت فراهم شود.

بیشتر بخوانید

علیرضا نیک نام ([email protected])

آشنایی با DOMS

کوفتگی تاخیری عضلانی (DOMS) یک درد تاخیری است که معمولاً پس از فعالیت های ورزشی (که به آن ها عادت نداریم) رخ می دهد. این درد معمولاً بین ۲۴ تا ۷۲ ساعت پس از فعالیت ورزشی رخ می دهد و خود به خود نیز بهبود می یابد. در میان انواع فعالیت های ورزشی محرک DOMS، آن هایی که دارای انقباضات طویل شونده (LC) و شدید هستند بیشتر DOMS را تحریک می کنند. مثال: پایین آمدن از کوه، تمرینات پرشی و پلیومتریک، دویدن در سراشیبی و… هر چند سازوکارهای بروز DOMS هنوز در حال مطالعه هستند اما شواهدی وجود دارد که انقباضات طویل شونده (LC) می تواند باعث تنظیم افزایشی آنزیم سیکلو اکسیژناز (COX) شود که یکی از سازوکارهای اساسی در بروز DOMS و ایجاد درد عضلانی است. بنابراین مهار کننده های آنزیم سیکلو اکسیژناز (COX) در پیشگیری از DOMS می توانند موثر باشند. سلکوکسیب، ناپروکسن و ایبوبروفن برخی از داروهایی هستند که به عنوان مهار کننده های COX شناخته می شوند و اشاره شده است که می توانند در پیشگیری از DOMS کمک کننده باشند. با این حال عوارض گوارشی و فیزیولوژیک آن ها باعث می شود که چندان به ورزشکاران برای کاهش DOMS توصیه نشوند. بنابراین مصرف مکمل ها یا مواد طبیعی که خاصیت مهار کنندگی بر COX داشته باشند می تواند برای ورزشکاران کاربرد های زیادی داشته باشد. کورکومین، آب چغندر قرمز، آب گیلاس/آلبالو، کوئرستین و کافئین یا قهوه برخی از این مکمل ها هستند.

بیشتر بخوانید

قطعاً چربی سوزی یکی از مهم ترین موضوعات حوزه سلامت هست چرا که طبق آمارهای سازمان بهداشت جهانی ۱.۹ میلیلارد از انسان ها دارای اضافه وزن و ۶۵۰ میلیون نفر هم دچار چاقی هستند. تاره این آمار ها برای سال ۲۰۱۶ است. پیش بینی هایی وجود داره که تا سال ۲۰۵۰ حدود ۴ میلیارد انسان گرفتار معضل چاقی خواهند شد. درسته که چاقی با بسیاری از بیماری ها ارتباط داره ولی شاید بیشترین مشکلی که آدما با چاقی دارن مربوط به ظاهر بدن و تناسب اندام شون هست. به خاطر همین هم بازار محصولات و خدمات چربی سوزی حسابی سکه شده و گردش مالی اون هم هر روز در حال افزایش است. اما واقعیت این است که چربی سوزی یک فرایند بیولوژیکی پیچده است و هیچ کدام از محصولاتی که برای چربی سوزی ارائه می شوند تا الان نتوانستند جلوی پیشرفت چاقی را در جهان بگیرند.

 

در این فایل صوتی این سوال بررسی شده است که چرا چربی سوزی انقدر سخته و انسان ها به راحتی نمی توانند از دست چربی ها خلاص بشوند. (نکته در فایل به اشتباه ذکر شده است که ۱۲۰ روز معادل ۳ ماه است که ضمن عرض عذرخواهی چون قابل ویرایش نبود در این قسمت به آن اشاره شد)

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

خلاصه و نکات کلیدی

  • به طور کلی سیستم های انرژی به دو دسته هوازی و بی هوازی تقسیم می شوند که دستگاه بی هوازی خود به دو بخش دستگاه فسفاژن و لاکتیک اسید (گلیکولیز بی هوازی) تقسیم بندی می شود.
  • در سیستم فسفاژن ATP و CrP به صورت ذخیره در سلول ها وجود دارد تا در هنگام نیاز به حرکات سریع و شدید آزاد شده و انرژی آنی یا فوری در اختیار سلول قرار دهند.
  • این سیستم برای فعالیت هایی که حداکثر تا ده ثانیه با تمام سرعت و قدرت انجام می گیرد کفایت می کند. مانند: دو ۱۰۰متر- پرتاب ها- وزنه برداری – استارت ها.
  • در یک فعالیت ۱۰ ثانیه ای شدید ۴ ثانیه اول ATP مصرف شده و تخلیه می شود و ۶ ثانیه باقی مانده کراتین فسفات تولید انرژی کرده و ATP را بازسازی می کند. در نتیجه ذخیره کراتین فسفات از ATP در سلول بیشتر است.
  • اهمیت دستگاه فسفاژن در سرعت فراهمی انرژی نهفته است نه در مقدار انرژی موجود در آن.
  • بازیابی سیستم فسفاژن (بازسازی کراتین فسفات) به واسطه دستگاه تولید انرژی هوازی و آنزیم کراتین کیناز میتوکندریایی انجام می شود.

بیشتر بخوانید

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

مقدمه

انعطاف پذیری به عنوان یکی از قابلیت های مهم آمادگی جسمانی مرتبط با سلامتی است اما در بخش مرتبط با اجرا نیز کاربرد فراوانی دارد. یک فرد برای اینکه در طول زندگی خود بخواهد زندگی روان و سالمی را پشت سر بگذارد، لازم است تا از یک سطح انعطاف پذیری مطلوبی برخوردار باشد. هرگونه کاهش دامنه حرکتی مفصل که پیامد آن محدودیت حرکت باشد، عامل بروز مشکلاتی است که در جامعه به وفور قابل مشاهده است. بسیاری از ناراحتی های حال حاضر افراد جامعه به دلیل کم تحرکی بوده، که انعطاف پذیری از جمله عوامل تاثیر پذیر آن است. انعطاف پذیری به میزان حرکت حول یک محور گفته می شود. به عبارت دیگر، حداکثر دامنه حرکتی هر مفصل که قادر به حرکت باشد، انعطاف پذيری نامیده می شود. مانند مفصل زانو که محل اتصال استخوان های ران و درشت نی پا است. اما بهترین تعریف عبارت است از دامنه حرکتی ممکن پیرامون یک مفصل معین یا گروهی از مفاصل؛ به اعتقاد کارشناسان و متخصصان علم ورزش، برای اجرای مطلوب حرکات بدنی و رشته های مختلف ورزشی، انعطاف پذیری یک ضرورت محسوب می شود. رشته های مختلف ورزشی هرکدام از یک سطح انعطاف پذیری برخوردارند. بعضی از این رشته ها مانند ژیمناستیک و شیرجه به انعطاف پذیری بالایی نیاز دارد و سایر رشته ها نیز این انعطاف پذیری را حداقل در سطح متوسط نیازمندند. انعطاف پذيري هر مفصل مخصوص به آن مفصل مي باشد. بسته به کشش معمول و تمرينات شما ممکن است در بعضي مفاصل کاملاً انعطاف پذير باشد و در ساير مفاصل خشک و غير قابل انعطاف باشد.

بیشتر بخوانید