Tag Archive for: ATP

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

چکیده:

سازگاری ها در عضلات اسکلتی انسان در پاسخ به تمرین ورزشی، تا حد زیادی بر اثر نوع، حجم، شدت و تواتر (فرکانس) محرک های تمرینی مشخص می شود. با وجود این، شواهد زیادی نشان می دهند دسترسی به درشت مغذی ­های درون زاد و برون زاد می تواند پاسخ های درون سلولی چند گانه ای را به فعالیت ورزشی استقامتی و مقاومتی _ هر دو_ جرح و تعدیل کند. در کوتاه مدت (حاد)، دستکاری میزان دسترسی به سوبسترا (با تغییر دادن رژیم غذایی و یا زمان بندی وعده­های غذایی) غلظت سوبستراها و هورمون های موجود در خون که جرح و تعدیل چند مسیر پیام رسانی وابسته به گیرنده را بر عهده دارند به سرعت تغییر می دهد. رهایش سایتوکاین ­ها و عوامل رشدی ناشی از عضلات اسکلتی در حال انقباض نیز، گیرنده های سطح سلول را تحریک می کند و بنابراین  آبشارهای پیام رسانی درون سلولی زیادی فعال می شوند. این عوامل موضعی و سیستمیک، باعث اختلالات بارزی در نیمرخ ذخایر عضلات اسکلتی (و سایر بافت های حساس به انسولین) می شوند که به نوبه خود، آثار بارزی را بر متابولیسم استراحتی مواد سوختی و الگوهای استفاده از مواد سوختی هنگام فعالیت ورزشی می گذارند. با تکرار فعالیت ورزشی در هفته­ها یا ماه­ها، این تعاملات مواد مغذی_ فعالیت ورزشی، پتانسیل تغییر دادن بسیاری از فرایند های سازشی موجود در عضلات اسکلتی را دارند که در نهایت، به تفاوت های فنوتیپی ویژه (خاص) منجر می شود که بین افراد دیده می شود. یکی از راهبرد هایی که سازگاری ناشی از تمرین استقامتی را افزایش می دهد؛ آغاز فعالیت ورزشی در حالتی است که غلظت گلیکوژن عضلانی پایین ( تمرین کم) باشد. پاسخ تمرینی بزرگتر در اثر این دسترسی پایین به کربوهیدرات درون زاد، احتمالاً با افزایش فعالسازی کینازهای اصلی پیام رسان سلولی (نظیر AMPK, P38 MAPK)، عوامل رونویسی (نظیر P53, PPARɤ) و همکاران فعالسازی رونویسی[کو اکتیویتور] (PGC-1a) تنظیم می شود؛ بطوریکه تنظیم افزایشی هماهنگ شده در ژنوم میتوکندریایی و هسته ای _ هر دو_ رخ می دهد. این مطالعه مروری دیدگاهی هم عصر با درک ما از وقایع سلولی و مولکولی _عضلات اسکلتی در پاسخ به فعالیت ورزشی پس از تغییر دسترسی آن به مواد مغذی را ارائه می کند و در مورد چگونگی تعامل محیط هورمونی با تحریکات انقباضی به منظور جرح و تعدیل برخی از پاسخ های کوتاه مدت (حاد) به فعالیت ورزشی و در نتیجه بطور بالقوه افزایش دادن یا مهار کردن سازگاری های تمرینی بعدی بحث می کند.

بیشتر بخوانید

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

مقدمه

یکی از سیستم های متابولیکی که بدون نیاز به اکسیژن (بی هوازی) ATP را در سلول ها بازتولید می کند، واکنش آدنیلات کیناز است که واکنش میوکیناز نیز نامیده می شود. در این واکنش ۲ مولکول ADP به یکدیگر می پیوندند و ATP و آدنوزین مونوفسفات (AMP) را تولید می کنند. در واقع هنگام فعالیت ورزشی شدید؛ سرعت هیدرولیز ATP زیاد است. اگرچه عضله به شکل موثری ATP را توسط مسیرهای فسفاژن، گلیکولیز و فسفوریلاسیون اکسایشی بازسازی می کند اما باز هم ADP به عنوان یک فراورده دفسفوریلاسیون ATP افزایش می یابد. با توجه به اینکه ADP باعث کاهش شارژ انرژی سلول می شود باید سازوکاری وجود داشته باشد تا آن را حذف کند. این سازوکار توسط واکنش آدنیلات کیناز میسر می شود.  این واکنش با کنار هم قرار دادن دو مول ADP باعث تشکیل یک مول ATP و یک مول AMP می شود. هر چند این واکنش به تولید ATP نیز منجر می شود اما مقدار ATP تولیدی در مقایسه با دیگر منابع بازسازی ATP هنگام فعالیت ورزشی بسیار کم است. اما در هر صورت این واکنش می تواند فواید بالقوه ای در عملکرد عضلانی داشته باشد که در ادامه به آن پرداخته ایم. AMP تولیدی از واکنش میوکیناز می تواند به آدنورین تجزیه شود که در این صورت میل به خروج از سلول عضلانی پیدا می کند. راه دوم این است که AMP طی واکنشی برگشت­ ناپذیر، توسط آنزیم AMP دِ آمیناز، به IMP (اینوزین مونو فسفات) تبدیل شده که در این حین، NH3 از آن جدا می شود؛ سپس طی دو واکنش دیگر، باز پس دهی آمین یا رآمیناسیون انجام گرفته و مجددأ AMP تشکیل می شود. اگر AMP راه دوم را طی کند، مسیر تبدیل AMP به IMP و تشکیل دوباره AMP، چرخه ی پورین- نوکلئوتید نامیده می شود. چرخه نوکلئوتید پورین در هنگام فعالیت ورزشی شدید، روزه داری یا گرسنگی، هنگامی که مخازن ATP کاهش یافته است، رخ می دهد.

بیشتر بخوانید

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

مقدمه

فسفوریلاسیون اکسایشی فرآیندی است که در آن الکترون های پرانرژی NADH/FADH از طریق کمپلکس های مختلف واقع در غشای داخلی میتوکندری منتقل می شوند و در نهایت به اکسیژن مولکولی می رسند. این انتقال الکترون منجر به پمپاژ پروتون ها به فضای بین غشایی میتوکندری می شود و یک گرادیان الکتروشیمیایی ایجاد می کند که برای سنتز ATP استفاده می شود. بنابراین میتوکندری ها جایگاه اصلی مسیر تولید انرژی هوازی یا فسفوریلاسیون اکسایشی هستند. در اکثر انواع سلول، فسفوریلاسیون اکسایشی مکانیسم اولیه برای تولید ATP است، به جز در سلول های خاصی مانند گلبول های قرمز. گلبول های قرمز خون فاقد میتوکندری هستند و به همین علت نمی توانند از مسیر فسفوریلاسیون اکسایشی ATP را تولید کنند.

بیشتر بخوانید

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

آشنایی با مفهوم سیستم های انرژی (پیوستار انرژی)

پیوستار انرژی، انواع سیستم های انرژی مورد استفاده در فعالیت های بدنی مختلف را توصیف می کند.برای مثال، در ورزش‌های گروهی مانند فوتبال یا بسکتبال، وهله هایی از فعالیت‌های انفجاری و وهله هایی از فعالیت های با شدت کمتر وجود دارد، بنابراین نسبت سیستم هوازی و بی‌هوازی متفاوت است. در واقع مفهوهم پیوستار انرژی به این می پردازد که چگونه با تغییر شدت و مدت فعالیت ورزشی سهم سیستم های انرژی در تامین ATP مورد نیاز برای انقباض عضلانی تغییر می کند.در واقعیت، سیستم های انرژی هرگز به صورت مجزا کار نمی کنند و همه در زمان های مختلف با درصدهای متفاوتی کار می کنند. برای مثال هنگام دویدن ملایم، بدن همچنان از نسبت بسیار کمی از سیستم ATP-PC (فسفاژن) استفاده می کند و هنگام دویدن سرعت، بیشتر از سیستم فسفاژن استفاده می شود، البته در مقادیر بسیار کم از سیستم هوازی نیز استفاده می شود. همانطور که گفته شد درصد استفاده از هر یک از سیستم های انرژی به طور مداوم در حال تغییر خواهد بود، به ویژه در ورزش های نوع بازی که شدت و مدت تمرین انجام شده به طور مداوم در حال تغییر است.به طور کلی سیستم های انرژی به دو بخش بی هوازی و هوازی تقسیم می شوند. مسیرهای بی هوازی خود به دو بخش بی هوازی بی لاکتیک (سیستم فسفاژن) و بی هوازی با لاکتیک (گلیکولیز بی هوازی) تقسیم می شود. بر همین اساس معمولاً  سیستم های انرژی در سه نوع زیر طبقه بندی می شوند:

  1. سیستم فسفاژن
  2.  سیستم گلیکولیز بی هوازی
  3. فسفوریلاسیون اکسایشی (هوازی)

بیشتر بخوانید

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

گلیکولیز بی هوازی

گلیکولیز یا مسیر امبدن – میرهوف (Embden–Meyerhof–Parnas) مجموعه‌ای از واکنش‌های درون سلولی است که توسط آن یک قند شش کربنه (معمولاً گلوکز-۶-فسفات) به ترکیبات کربن‌دار کوچک‌تری (دو مولکول سه کربنه پیروات) شکسته می‌شود و بخشی از انرژی آزاد قند را تولید می کند. در فعالیت های ورزشی که با حداکثر تلاش بین ۳۰ ثانیه تا ۳ دقیقه به طول می انجامند سیستم گلیکولیز بی هوازی بیشترین نقش را در تامین انرژی مورد نیاز ورزشکار دارد. مانند دو ۴۰۰ و ۸۰۰ متر سرعت.

گلیکولیز یک واژه مرکب یونانی است که از دو بخش glykys به معنای شیرین و lysis به معنای شکستن (گلیکولیز: شکستن قند یا همان قندکافت) تشکیل شده است. نام امبدن –میرهوف از نام دو زیست‌شیمی‌دان آلمانی کاشف آن، یعنی گوستاو گورگ امبدن و اتو فریتز میرهوف گرفته شده‌است. در این واکنش‌ها گلوکز ابتدا در گروه هیدروکسیل کربن شماره شش، فسفردار شده و گلوکز ۶-فسفات تشکیل می شود. آنزیم کلیدی که این واکنش را کاتالیز می کند هگزو کیناز نام دارد. گلوکز ۶ فسفات در مرحله بعدی به فروکتوز ۶-فسفات تبدیل می‌گردد. سپس این ترکیب در کربن شماره یک نیز فسفرگیری کرده و فروکتوز ۶،۱- بیس‌فسفات را تولید می‌کند. در هر دو واکنش فسفرگیری، ATP دهنده گروه فسفاتی است. بنابراین اگر مبدا گلیکولیز از گلوکز باشد، برای اینکه فرایند گلوکولیز پیش برودنیازمند مصرف ۲ مول ATP یا انرژی است. با این حال سلول های عضلانی می توانند از قند ذخیره خود یعنی گلیکوژن نیز استفاده کنند. در هنگام فعالیت های ورزشی شدید، تارهای عضلانی گلیکوژن را به واحد های گلوکز ۱ فسفات تجزیه می کنند و سپس گلوکز ۱ فسفات به فروکتور ۶ فسفات تبدیل می شود. این فرایند گلیکوژنولیز نام دارد. ارزش آن این است که در گلیکوژنولیز برای تشکیل فروکتوز ۶ فسفات نیازی به مصرف ATP نیست. بنابراین اگر مبدا گلیکولیز بی هوازی از گلیکوژن باشد  یک ATP کمتر هزینه می شود. آنزیمی که گلیکوژن را به گلوکز ۱ فسفات تبدیل می کند، گلیکوژن فسفوریلاز نام دارد.

بیشتر بخوانید

نویسنده: علیرضا نیک نام (متخصص فیزیولوژی ورزشی)

آدرس صفحه اینستاگرام: Sportphysiologist@  آدرس ایمیل: [email protected]

خلاصه و نکات کلیدی

  • به طور کلی سیستم های انرژی به دو دسته هوازی و بی هوازی تقسیم می شوند که دستگاه بی هوازی خود به دو بخش دستگاه فسفاژن و لاکتیک اسید (گلیکولیز بی هوازی) تقسیم بندی می شود.
  • در سیستم فسفاژن ATP و CrP به صورت ذخیره در سلول ها وجود دارد تا در هنگام نیاز به حرکات سریع و شدید آزاد شده و انرژی آنی یا فوری در اختیار سلول قرار دهند.
  • این سیستم برای فعالیت هایی که حداکثر تا ده ثانیه با تمام سرعت و قدرت انجام می گیرد کفایت می کند. مانند: دو ۱۰۰متر- پرتاب ها- وزنه برداری – استارت ها.
  • در یک فعالیت ۱۰ ثانیه ای شدید ۴ ثانیه اول ATP مصرف شده و تخلیه می شود و ۶ ثانیه باقی مانده کراتین فسفات تولید انرژی کرده و ATP را بازسازی می کند. در نتیجه ذخیره کراتین فسفات از ATP در سلول بیشتر است.
  • اهمیت دستگاه فسفاژن در سرعت فراهمی انرژی نهفته است نه در مقدار انرژی موجود در آن.
  • بازیابی سیستم فسفاژن (بازسازی کراتین فسفات) به واسطه دستگاه تولید انرژی هوازی و آنزیم کراتین کیناز میتوکندریایی انجام می شود.

بیشتر بخوانید



نویسندگان: علیرضا نیک نام (دکتری فیزیولوژی ورزشی) [email protected]

چکیده

این مقاله مروری برگرفته از مطالعاتی است که به نقش ترکیبات نیتروژنی غیر پروتئینی در مانیتورینگ و تنظیم پاسخ های سازشی به تمرین ورزشی پرداخته اند. نیتروژن یکی از عناصر بسیار مهم و پر کاربرد در زندگی و محیط اطراف ما است و نقش مهمی در حفظ سلامت بدن موجودات زنده از جمله انسان ایفا می کند. این عنصر به وفور در محیط اطراف ما یافت می شود و حدود ۸۰ درصد جو زمین را تشکیل داده است و با هر نفسی که می کشیم وارد بدن ما می شود. با این وجود بدن انسان قادر به استفاده از نیتروژنی که به طور مستقیم از هوا یا خاک دریافت می کند نمی باشد و نیاز است این عنصر از طریق گیاهان سبز و میکروب ها به شکل قابل استفاده برای انسان تبدیل شود. نیتروژن نقش مهمی در عملکرد سیستم های مختلف بدن ایفا می کند که یکی از مهم ترین آن ها تولید پروتئین است. بدن ما برای ساخت پروتئین در عضلات، پوست، خون، مو، ناخن ها و DNA به نیتروژن نیاز دارد و از آن در اسیدهای آمینه برای ساخت سایر اسید آمینه هایی که برای سنتز پروتئین انسانی استفاده می شوند بهره می برد. اسیدهای نوکلئیک DNA که ژن ما را تشکیل می دهند و RNA که در سنتز پروتئین دخیل می باشند نیز حاوی نیتروژن می باشند. نیتروژن در عملکرد هورمون ها، عملکرد مغز و سیستم ایمنی بدن نیز نقش مهمی داشته و رشد طبیعی بدن، جایگزینی سلول ها و ترمیم بافت ها همگی برای تولید سلول های جدید به نیتروژن نیاز دارند. بدن از نیتروژن برای ساخت ترکیبات غیر پروتئینی مانند ماده “هِم” در هموگلوبین که اکسیژن را به گلبول های قرمز خون منتقل می کند نیز استفاده می کند. به طور خلاصه باید اذعان داشت نیتروژن یکی از ۴ عنصر اصلی تشکیل دهنده بدن یعنی هیدروژن، کربن، نیتروژن و اکسیژن است. با وجود این ترکیبات نیتروژنی بدن به طور کلی به ۲ بخش قابل تقسیم هستند: ۱- ترکیبات نیتروژنی پروتئینی و ۲- ترکیبات نیتروژنی غیر پروتئینی. مهمترین ترکیبات نیتروژنی غیر پروتئینی عبارتند از: اوره، کراتین، کراتینین، اسید اوریک،گلوتاتیون، آمونیاک، آمینو اسیدها، اورنیتین، سیترولین، نیتریک اکساید و گونه های واکنشی نیتروژنی (RNS). که در این مطالعه به معرفی نقش هر یک از آن ها در مانیتورینگ و تنظیم پاسخ های سازشی به تمرین خواهیم پرداخت.

بیشتر بخوانید